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Abstract
A new analytical approach, beyond the rotating wave approximation, based on unitary
transformations and the non-Markovian master equation for the density operator, is applied to
treat the biased spin–boson model with a Lorentzian structured bath for arbitrary detunings at
zero temperature. Compared to zero bias, we find that the non-equilibrium dynamics
demonstrates two more damping oscillation frequencies and one additional relaxation frequency
for non-zero bias. Analytical expressions for the non-Markovian dynamics and the
corresponding spectrum, the localized–delocalized transition point, the coherent–incoherent
transition point, the analytical ground energy, the renormalized tunneling factor and the
susceptibility are determined. The sum rule and the Shiba relation are checked in the coherent
regime.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a fully quantum-mechanical way, the spin–boson model
(SBM) [1–3] is a prominent physical model in the research
of dynamics and decoherence for numerous physical and
chemical processes. Due to its advantage in the quantitative
description of quantum bits (qubits), the SBM has recently
attracted wide interest in the field of quantum computation
and information. In the last decade, many promising
scalable solid-state qubit schemes have been proposed and
realized [4–7]. Although great improvement has been made,
there are still great obstacles on the road to realizing quantum
computation and information. One of the biggest obstacles is
the decoherence of the qubits due to their coupling with the
environment [8, 9]. In SBM, the effect of the environment
is characterized by the spectral density, which is commonly
assumed to be ohmic or a power function of the bath
mode. However, in many qubit schemes realized today, the
environment of the qubit may have a certain characteristic
frequency, and consequently a shape Lorentzian peak may
appear in the spectral density [6, 7, 10–12]. For example,
the information of a flux qubit is usually read out by a
dc-SQUID with a characteristic plasma frequency. At the
same time, the environmental noise of the SQUID is also
transferred to the qubit leading to decoherence and dissipation.

A similar example is a Cooper-pare box (CPB) coupled to
a transmission line resonator. All these problems can be
modeled as a two level system (TLS) coupled to a harmonic
oscillator (HO) which itself is coupled further to a normal
ohmic environment. As an alternative but equivalent point
of view, such a qubit–HO–environment model can be exactly
mapped to the SBM with a Lorentzian structured bath J (ω)

(see (6) in section 2) [13–16].
Different from the ohmic bath, the equilibrium dynamics

of the SBM with such a structured bath or the equivalent
qubit–HO–environment model have not been studied that
much. Many methods have only been studied in a particular
regime, such as the studies on a driven qubit coupled
to a structured environment by Grifoni et al [17, 18].
However, we are interested in a regime with static bias.
Typical studies on this particular spectral density include
the quasi-adiabatic propagator path integral (QUAPI) [19],
the van Vleck perturbation theory together with a Born–
Markov master equation (VVBM) [20], the flow equation
renormalization (FER) [21–23], the non-interacting blip
approximation (NIBA) [22, 24], an approximation scheme
by introducing a HO displacement operator [25] and a
perturbation method based on unitary transformation [26]. It is
known that QUAPI is numerical and extensive computational
resources are needed when the bath possesses a long memory
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time [23], and we have found that QUAPI does not easily reach
stable non-equilibrium dynamics for the non-zero bias case.
VVBM works well with finite bias at low temperature [20].
However, VVBM uses the Van Vleck perturbation theory up
to the second order in the qubit–HO coupling to get the
eigenvalues and eigenfunctions of the non-dissipative qubit–
HO system, solves a Born–Markov master equation for the
reduced density matrix in the qubit–HO’s eigenbasis, and
it requires a small qubit–HO coupling and a Born–Markov
approximation [20]. To our knowledge, FER has not studied
non-equilibrium dynamics and needs extra setting parameters
to be chosen for the best results [27]. To date, NIBA is not
applicable for non-zero bias at low temperature [20, 22, 24].
Reference [25] only presents results for zero bias near
resonance, meanwhile [26], with one unitary transformation
also only presents results for zero bias.

In this paper, as an extension to Huang and Zheng’s
work [26, 28], a new analytical approach, beyond the
rotating wave approximation (RWA), based on two unitary
transformations and the non-Markovian master equation for
the density operator, is applied to treat the biased spin–boson
model (SBM) with a Lorentzian structured bath for arbitrary
detunings at zero temperature. One should note that the two
unitary transformations are different from [26, 28] and it makes
our approach applicable both for non-zero bias and zero bias.
Moreover, within a nontrivial Born approximation but without
the Markovian approximation, we get the analytical density
operator by the master equation method, which can be easily
extended to finite temperature. Compared with [28], our
approach has several advantages. First, both the localized–
delocalized transition point αL and the coherent–incoherent
transition point αc are studied; these have not been provided
so far (except αc with zero bias by [26]). Second, it works
well for a wide parameter range: having no direct restriction
on the qubit–HO coupling, both for biased and unbiased cases,
at arbitrary finite detunings (positive/negative detunings or on
resonance) and works well from weak to sufficiently strong
spin–bath coupling as long as α < αc, which is little-studied
and beyond the weak coupling regime. Our results are checked
in the exactly solvable special cases (such as the independent
boson model and the Rabi model). The dynamics and the
corresponding spectrum are compared to the literature results
both for unbiased and biased cases. The Shiba relation and the
sum rule have also been examined.

This paper is organized as follows. Section 2 introduces
the model and our treatment. Meanwhile, the ground state
energy, the renormalized tunneling factor η and localized–
delocalized transition point αL are determined. Section 3
presents the master equation and an analytical expression for
the density operator without the Markovian approximation. In
section 4, we have calculated the non-equilibrium dynamics
P(t) and the corresponding spectrum S(ω), and presented the
physical interpretation. In section 5, we show the susceptibility
and the validation of the Shiba relation. The coherent–
incoherent transition point αc is determined.

2. Model and treatment

In a flux qubit system, the qubit is the two macroscopically
distinct quantum states representing clockwise and anticlock-
wise rotating supercurrents. The qubit is entangled with
the detecting field, which is itself coupled with the outside
noncoherent environment. The qubit can be characterized
by Pauli matrices, the detecting equipment, which is actually
a LC resonant circuit [6, 7], can be described by a
harmonic oscillator with a characteristic frequency �, and the
environment can be described by a set of harmonic oscillators.
Therefore, the qubit–HO–environment Hamiltonian can be
written as (with Planck units h̄ = kB = 1):

H = −�

2
σx + ε

2
σz + �A† A +

∑

k

ωka†a

+ (A† + A)

[
gσz +

∑

k

κk(a
†
k + ak)

]

+ (A† + A)2
∑

k

κ2
k

ωk
, (1)

where � is the energy difference of the qubit and ε is the
applied bias; σx and σz are Pauli matrices to describe the
spin system; A (or A†) and ak (or a†

k ) are the annihilation (or
creation) operators of harmonic oscillators with frequencies
� and ωks, respectively; g is the qubit–HO coupling and κk

is the HO–environment coupling related to the kth oscillator.
The environment is described by the ohmic spectral density
JOhm(ω) ≡ ∑

k κ2
k δ(ω − ωk) = �ω, where � is a

dimensionless coupling constant.
As an alternative but equivalent point of view, such a

qubit–HO–environment model in (1) can be exactly mapped to
the conventional SBM with a Lorentzian structured bath. The
Hamiltonian reads [13–16, 26]

H = HS + HB + HI, (2)

where the subscript ‘S’ denotes the spin system, the subscript
‘B’ denotes the boson environment and the subscript ‘I’
denotes the interaction between the spin and the boson
environment, with

HS = −�

2
σx + ε

2
σz, (3)

HB =
∑

k

ωkb†
kbk, (4)

HI = 1
2σz

∑

k

λk(b
†
k + bk), (5)

where b†
k (bk) is the creation (or annihilation) operator of

the kth boson mode with frequency ωk ; σx and σz are Pauli
matrices to describe the spin system; ε is the bias, � is the
bare tunneling and λk is the coupling between the spin and the
boson environment. We employ the symbols |↑〉 and |↓〉 to
denote the eigenstates of the Pauli matrix σz with eigenvalues
+1 and −1 respectively. The boson environment of the SBM

2



J. Phys.: Condens. Matter 22 (2010) 115301 C Gan et al

is described by the Lorentzian structured spectral density, and
it reads [13–16]

J (ω) =
∑

k

λ2
kδ(ω − ωk) = 2αω�4

(�2 − ω2)2 + (2π�ω�)2
, (6)

in which α = limω→0 J (ω)/(2ω) = 8�g2/�2 is the
dimensionless coupling constant.

Our treatment starts from the SBM in (2). In order
to take into account the correlation between the spin and
bosons, a unitary transformation is applied to H to obtain
H ′ = exp(S)H exp(−S), where the generator S =∑

k[(λk/(2ωk))](b†
k−bk)[ξkσz+(1−ξk)σ0]. Here we introduce

a constant σ0 and a k-dependent function ξk , which will be
determined later. We rewrite the transformed H ′ = H ′

0 + H ′
1 +

H ′
2 as

H ′
0 = − 1

2η�σx + 1
2εσz +

∑

k

ωkb†
kbk

−
∑

k

λ2
k

4ωk
ξk(2 − ξk) −

∑

k

λ2
k

4ωk
σ 2

0 (1 − ξk)
2, (7)

H ′
1 = 1

2

∑

k

λk(1 − ξk)(b
†
k + bk)(σz − σ0) − iσy

2
η�X, (8)

H ′
2 = − 1

2�σx(cosh X − η) − 1
2�iσy(sinh X − ηX)

−
∑

k

λ2
k

2ωk
σ0(1 − ξk)

2(σz − σ0), (9)

where X ≡ ∑
k(λkξk/ωk)(b

†
k − bk), and η is the

thermodynamic average of cosh X , as

η = Z−1Tr[exp(−β H ) cosh X]
= exp

[
−

∑

k

λ2
k

2ω2
k

ξ 2
k coth

(
ωk

2T

)]
, (10)

where Z = Tr[exp(−β H )] and T = 1/β is the temperature.
Since the spin and bosons are decoupled in H ′

0, it is

exactly solvable, by a unitary matrix U = ( u v

v −u

)
, with u =√

(1 − ε/W )/2, v = √
(1 + ε/W )/2 and W = √

ε2 + η2�2.
The unitary matrix U only acts on the spin operators, such as
σx and σz . The diagonalized H̃0 = U † H ′

0U reads1.

H̃0 = − 1
2 W σ̃z +

∑

k

ωkb†
kbk

−
∑

k

λ2
k

4ωk
ξk(2 − ξk) −

∑

k

λ2
k

4ωk
σ 2

0 (1 − ξk)
2, (11)

where σ̃x,y,z are the Pauli matrices after the U unitary
transformation. Here, we employ the symbols |±〉 to denote
the eigenstates of the Pauli matrix σ̃z with eigenvalues ±1
respectively. The eigenstate of H̃0 is the direct product
|{nk},±〉, where |{nk}〉 are the eigenstates of bosons with nk

phonons for the mode k. The ground state of H̃0 is |g0〉 =
|{0k},+〉 and the lowest exited states are |{0k},−〉, |{1k},+〉
and |{1k},−〉.
1 Mathematically, the transformation should extend to the Hilbert space of the
spin–boson system by denoting U to the direct product with 1B as U ⊗ 1B,
where 1B is the identity matrix of the Hilbert space of the boson environment.
In the operator level, it is convenient to omit the extension.

Similarly, we make the transformations to get H̃1 =
U † H ′

1U and H̃2 = U † H ′
2U , which are treated as perturbations

and should be as small as possible. For this purpose, it is
determined as σ0 = −ε/W and ξk = ωk/(ωk + W ). Thus

H̃1 = 1
2 (1 − σ̃z)

∑

k

Qk(b
†
k + bk)

+ 1
2

∑

k

Vk[b†
k(σ̃x + iσ̃y) + bk(σ̃x − iσ̃y)], (12)

where Qk = λk[ε/(ωk + W )] and Vk = λk[η�/(ωk +
W )]. In the SBM, λk 
 �. Qk and Vk can be
viewed as the renormalized spin–bath coupling, and they are
always smaller than λk and even smaller for high frequencies.
Obviously, H̃1|g0〉 = 0. Under the eigenbasis of H̃0, H̃1

has only off-diagonal terms and, in the lowest states, it is
〈{0k},−|H̃1|{1k},+〉 = Vk , 〈{0k},−|H̃1|{1k},−〉 = Qk and
〈{1k},−|H̃1|{1k′ },+〉 = 0. Meanwhile, the terms in H̃2 are
related to the multi-boson transition, and their contributions to
the physical quantities are to the fourth order of λk (O(λ4

k)).
These are key points in our approach. The transformed
Hamiltonian is approximated as

H̃ = H̃0 + H̃1 + H̃2 ≈ H̃0 + H̃1 (13)

in the following. Note that the treatment above is an extension
to the one proposed by [28], while our generator S and the
second unitary transformation are different. However, the k-
dependent function ξk and decomposing the Hamiltonian into
three parts are done with the same spirit and they have been
discussed in detail in [28].

Thus, the ground energy of H̃ is just the same as that of
H̃0, and it is determined as

Eg = −1

2
W −

∑

k

λ2
k

4ωk

[
1 −

(
η�

ωk + W

)2]
. (14)

The Hamiltonian H in (2) can be solved exactly in two
limits: one is the weak coupling limit with Eg(α → 0) =
−√

�2 + ε2/2 and the other is the zero tunneling limit (the
independent boson model) with Eg(� → 0) = −|ε|/2 −∑

k λ2
k/(4ωk). The ground energies in (14) are the same in

both limits.
Up to now, the deduction is independent of any specific

spectral density and it is not restricted to zero temperature. In
the following, the treatment is at zero temperature. As shown
in H ′

0, η is the renormalized tunneling factor. In the limit of
zero temperature, it is

η = exp

[
−

∫ ∞

0

J (ω) dω

2(ω + W )2

]
. (15)

The integration in (15) can be done to the end, analytically.
In the case of zero bias (ε = 0), η has the same expression
as Huang’s and a similarly positive change of the tunneling
frequency can be predicted when � ∼ �, which fails in
the adiabatic approach [26]. Generally, the renormalized
tunneling factor η is larger than 0, which means that there
is an effective tunneling between the two states of the qubit
in a realistic situation. If the renormalized tunneling factor
suddenly changes to 0, the localized–delocalized transition
occurs and the qubit will be localized in one of the two states
where it was located before the transition.
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Figure 1. The renormalized tunneling factor η versus α. It shows
that η goes to zero gradually with smaller � and it goes to zero
suddenly with larger �.

Figure 1 shows numerical results of η as a function of α.
For larger � (e.g. 0.15, 0.3), one can see that η suddenly goes
to zero at the localized–delocalized transition point α = αL,
where η = 0 for all α � αL. While for smaller � (e.g. 0.01),
η gradually goes to zero, and we set the cut at the value
η = 0.0001, which is small enough.

A phase diagram of the delocalized–localized transition
point αL versus bias ε is plotted in figure 2 with different
� (=0.01, 0.02, 0.05, 0.1) and different detunings �/�

(=0.5, 1). The area of α < αL is called the ‘localized phase’,
and the area of α > αL the ‘delocalized phase’. It shows that
αL increases with increasing ε and it is almost the same for
different �s. The change of αL is more significant for larger �

or smaller ε.

3. Density operator and master equation

In the Schrödinger picture, the density operator of the
SBM is denoted as ρSB(t) for the Hamiltonian H in (2),
and the density operator for H̃ in (13) is ρ̃SB(t) =
U † exp(S)ρSB(t) exp(−S)U , where the subscript ‘SB’ denotes
the total spin–boson system. In the following, it will be
analyzed in the interaction picture, denoted by a superscript
‘I’ in the operator. H̃0 is treated as the unperturbed part and
H̃1 as a perturbation. Moreover, in the interaction picture, it is
assumed that the density operator for H̃ is ρ̃I

SB(t) = ρ̃I
S(t)ρB,

where ρ̃I
S(t) = TrBρ̃I

SB(t) is the reduced density operator.
Within the Born approximation (only keeping the second order
of H̃1), we can obtain the non-Markovian master equation for
the reduced density operator

d

dt
ρ̃I

S(t) = −
∫ t

0
TrB[H̃1(t), [H̃1(t

′), ρ̃I
S(t

′)ρB]] dt ′, (16)

where H̃1(t) is denoted as the perturbed part H̃1 in the
interaction picture. Since the renormalized spin–bath coupling
Qk and Vk in H̃1 are always smaller than λk , it makes our Born
approximation nontrivial and more reasonable by comparing it

Figure 2. Phase diagram of the localized–delocalized transition point
αL versus ε. It shows that αL is almost the same with different � and
the curve changes rapidly for larger � and/or smaller ε. Parameters:
near resonance � = �, � = 0.01, 0.02, 0.05, 0.1; off resonance
� = 0.5�, � = 0.01, 0.02, 0.05, 0.1.

with the commonly used Born approximation [29, 30], which
directly does the perturbation to the second order of H I in (2).

The master equation in (16), without the Markovian ap-
proximation, can be done to the end with a Laplace transfor-
mation and an inverse-Laplace transformation. Changing from
the interaction picture back to the Schrödinger picture, denot-
ing the reduced density operator in the Schrödinger picture as
ρ̃S(t) = ( ρ̃11(t) ρ̃12(t)

ρ̃21(t) ρ̃22(t)

)
for H̃ , at zero temperature, we obtain

ρ̃21(t) = ρ̃21(0)

2π

∫ ∞

−∞
i exp(−iωt) dω

ω − W − �(ω) + i�(ω)
, (17)

and

ρ̃22(t) = ρ̃22(0)

2π

∫ ∞

−∞
i exp(−iωt) dω

ω − �′(ω) + i�′(ω)
. (18)

Abbreviations are used in (17) and (18), as

�(ω) = γ (ω) + ε2

η2�2
γ (ω − W ), (19)

�(ω) = R(ω) + ε2

η2�2
R(ω − W ), (20)

and
�′(ω) = γ (W + ω) + γ (W − ω), (21)

�′(ω) = R(W + ω) − R(W − ω), (22)

where R(ω) and γ (ω) are the real and imaginary parts of∑
k V 2

k /(ω−i0+−ωk) (0+ is a positive infinitesimal introduced
by the inverse-Laplace transformation).

R(ω) =
∑

k

V 2
k

(ω − ωk)
=

∫ ∞

0

η2�2 J (ω′) dω′

(ω − ω′)(ω′ + W )2
, (23)

γ (ω) = π
∑

k

V 2
k δ(ω − ωk) = πη2�2 J (ω)

(ω + W )2
, (24)
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respectively. In addition, two other terms in ρ̃S(t) are ρ̃12(t) =
[ρ̃21(t)]† and ρ̃11(t) = 1 − ρ̃22(t). Since the specific form of
J (ω) is not involved an analytical expression of the reduced
density operator ρ̃S(t) is offered and it is independent of any
specific spectral density.

We assume the initial density operator at t = 0 is
ρSB(0) = exp(−S)[|↑〉〈↑| ⊗ ρB(0)] exp(S), where the spin
is in the lower state |↑〉〈↑| and ρB(0) is the equilibrium state.
Thus, the corresponding initial reduced density operator for H̃
in (13) is

ρ̃S(0) = 1
2

(
1 − ε/W η�/W
η�/W 1 + ε/W

)
. (25)

4. Non-equilibrium dynamics and the physical
interpretation

For the SBM, it is common to evaluate the non-equilibrium
dynamics P(t), as this is the quantity of interest in the
experiments. P(t) is also called the population difference.
Following the unitary transforms, it is determined as

P(t) = TrS(TrB(ρSB(t)σz))

= TrS(TrB(exp(−S)U ρ̃SB(t)U † exp(S)σz))

= ε

W
[2ρ̃22(t) − 1] + 2η�

W
Re[ρ̃21(t)]. (26)

Substituting (17) and (18) into (26) with the initial condition
in (25), the dynamics read

P(t) = 2ε

πW

(
1 + ε

W

) ∫ ∞

0
dω

cos(ωt)�′(ω)

[ω − �′(ω)]2 + [�′(ω)]2

+ η2�2

πW 2

∫ ∞

0
dω

cos(ωt)�(ω)

[ω − W − �(ω)]2 + [�(ω)]2
− ε

W
.

(27)

Thus, we end up with an exact analytical expression of the non-
Markovian dynamics P(t) in (27). As time goes to infinity, we
have the dynamics at the long time limit P(t → ∞) = −ε/W .

4.1. Spectrum of the non-Markovian dynamics

In order to get insight into the dominant frequencies of P(t), a
Fourier transform is applied to (27) according to

S(ω) ≡
∫ ∞

−∞
dt cos (ωt) P(t). (28)

The spectrum S(ω) is an even function and for ω � 0 it is
written as

S(ω) = 2ε

W

(
1 + ε

W

)
�′(ω)

[ω − �′(ω)]2 + [�′(ω)]2

+ η2�2

W 2

�(ω)

[ω − W − �(ω)]2 + [�(ω)]2
− 2πε

W
δ(ω). (29)

The frequency property of the dynamics P(t) can be
analyzed directly by S(ω). On one hand, the first two terms
in (29) are Lorentzian-like functions. On the other hand, γ (ω)

is small when g is small or ω is away from �, thus �(ω)

and �′(ω), which are functions related to γ (ω), are usually

small. Therefore, the dominant frequencies of S(ω) should be
the solutions ωp of the equation

ω − W − �(ω) = 0, (30)

and the solutions ωp′ of the equation

ω − �′(ω) = 0. (31)

Since the dissipative environment generally adds a shift
and width to the dominant frequencies, we can investigate the
physical nature in the limit of small HO–environment coupling
(� → 0). Consequently, the spectral density J (ω) in (6) goes
to (4g2�/ω)[δ(ω − �) + δ(ω + �)] and R(ω) in (23) goes to
4g2η2�2/[(ω − �)(� + W )2]. Therefore, according to (30)
and (20), the dominant frequencies ωp are the solutions of the
equation

ω − W = 4g2

(� + W )2

[
η2�2

ω − �
+ ε2

ω − � − W

]
. (32)

Equation (32) can be solved exactly. If g2ε2/[�2(�+W )2] 

1, ωp can be simplified and approximated as

ωp1,2
∼= � + W

2
±

√(
� − W

2

)2

+ 4g2η2�2

(� + W )2
, (33)

where the subscripts ‘1, 2’ relate to the sign ‘+,−’,
respectively, and

ωp3
∼= (� + W ) + W4g2ε2

�W (� + W )2 − 4g2η2�2
. (34)

Similarly, according to (31) and (22), the dominant frequencies
ωp′ are exactly solvable as

ωp′1 = 0 (35)

and

ωp′2,3 = ±
√

(W − �)2 + 8g2η2�2

(� + W )2
. (36)

Since S(ω) is an even function, we only need to consider the
non-negative part (ω � 0). Thus, the negative one (ωp′3) of the
solutions ωp′ in (36) is discarded. Consequently, for non-zero
bias, there are five dominant frequencies: ωp′1 = 0, ωp′2, ωp1,
ωp2, ωp3.

For zero bias (ε = 0), we have �(ω) = γ (ω), �(ω) =
R(ω) and

S(ω) = η2�2

W 2

�(ω)

[ω − W − R(ω)]2 + [γ (ω)]2
(37)

for the non-negative part ω � 0. Similarly, the dominant
frequencies can be determined, but with only two frequencies
ωp1 and ωp2, which are the exactly solvable solutions of
ω − W − R(ω) = 0, as

ωp1,2 = � + W

2
±

√(
� − W

2

)2

+ 4g2η2�2

(� + W )2
. (38)
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It is consistent with Huang’s results (see equation (17) in [26]).
Compared to unbiased case, the effect of finite bias leads to
three additional dominant frequencies: ωp′1 = 0, ωp′2, ωp3.

Since the renormalized tunneling in the limit of small HO–
environment coupling is

η = exp

[
− 2g2

(� + W )2

]
∼= 1, (39)

the resonance condition is � = W0 = √
�2 + ε2 ∼= W .

For the near resonance � = W case, equation (33) can be
simplified and approximated as

ωp1,2
∼= � ± η�

�
g. (40)

For zero bias, there are only two dominant frequencies ωp1,2 =
� ± g according to (38), which is consistent with the result
of the simple exactly solvable Jaynes–Cummings model [31].
Moreover, for � = W with finite bias (36) can be simplified as

ωp′2 =
√

2η�

�
g. (41)

In the case of finite detunings |� − W | > 0, with small
qubit–HO coupling g 
 �,�, (33) and (36) can be simplified
and approximated as

ωp1,2
∼= W + 4g2η2�2

(W − �)(� + W )2
(42)

or

� + 4g2η2�2

(� − W )(� + W )2
, (43)

(in (42) and (43), the larger one is ωp1 and vice versa) and

ωp′2 ∼= |W − �| + 4g2η2�2

|W − �|(� + W )2
. (44)

One can clearly show the physics of all these dominant
frequencies: ωp′1 = 0 (35) is a relaxation peak, ωp1 and
ωp2 are related to the renormalized energy difference of the
qubit in (42) and the energy of the HO in (43), and ωp′2 is
related to the energy difference of the qubit and the HO in (44).
Meanwhile, ωp3 is related to the summation of the qubit energy
W and the HO energy � as shown in (34). Therefore, for small
qubit–HO coupling, due to the dressing of the boson bath,
ωp3 and ωp′2 are not exactly the summation or the difference
between W and �, however, we might still call ωp′2 the ‘beat
frequency’ and ωp3 the ‘sum frequency’.

4.2. Spectrum of the qubit–HO system

Before exploring the exact spectrum S(ω) corresponding to the
non-Markovian P(t) in a realistic situation, as an alternative
view to (2), we will briefly investigate the energy spectrum of
the equivalent qubit–HO–environment model (1), which is a
physically clearer way. Since the environment generally shifts
and broadens the spectrum, to get a rough idea, the qubit–HO–
environment model without HO–environment coupling (� =

0) is investigated here, and the qubit–HO Hamiltonian reads
(so-called Rabi model)

Hq−HO = −�

2
σx + ε

2
σz + �A† A + (A† + A)gσz. (45)

If the qubit–HO is decoupled (g = 0), (45) is exactly
solvable. By applying a unitary matrix to Hq−HO, it can be
diagonalized as

Hq−HO = − W0

2
σ̌z + �A† A, (46)

where W0 = √
ε2 + �2. Thus, the spectrum of the

decoupled qubit–HO without environment is exactly shown,
with eigenbasis |n, ±̌〉, where |n〉 denotes the eigenstates of
HO with n (n = 0, 1, . . . ,∞) phonons and |±̌〉 denotes
the eigenstates of the Pauli matrix σ̌z with eigenvalues ±1
respectively.

If the qubit–HO is switched on (g �= 0), (45) can be solved
with exact numerical diagonalization, with an eigenbasis
denoted as | j〉 ( j = 0, 1, . . . ,∞), which has been ordered
increasingly according to the eigenenergies.

To further explore the instinct of the coupled qubit–HO
system, an analytical deduction beyond RWA is provided
as follows. Since (45) has a similar form to (2) when
removing the summation and the multimode index k and
substituting ωk → �, b†

k → A†, bk → A and λk/2 →
g we, therefore, make two similar unitary transformations
U ′† exp(S′)H exp(−S′)U ′ to H in (45) with generator S′ =
(g/�)(A† − A)[�σz/(� + W ′) − ε/(� + W ′)] and U ′ =
( u′ v′

v′ −u′
)
, with u′ = √

(1 − ε/W ′)/2, v′ = √
(1 + ε/W ′)/2

and W ′ = √
ε2 + η′2�2, and to the second order of the qubit–

HO coupling g (O(g2)), it results in

Hq−HO
∼= − 1

2 W ′σ̃ ′
z + �A† A + εg

� + W ′ (1 − σ̃ ′
z)(A† + A)

+ η′�g

� + W ′ [A†(σ̃ ′
x + iσ̃ ′

y) + A(σ̃ ′
x − iσ̃ ′

y)]

− g2(� + 2W ′)
(� + W ′)2

− g2ε2

�(� + W ′)2
, (47)

where η′ = exp[−2g2/(�+W ′)2]. Note that (1−σ̃ ′
z)|+〉′ = 0,

where |+〉′ denotes the eigenstate of the Pauli matrix σ̃ ′
z with

eigenvalue +1. If the value |εg/[�(� + W ′)]| 
 1, then the
term εg(1 − σ̃ ′

z)(A† + A)/(� + W ′) in (47) can be discarded.
Therefore, Hq−HO is exactly solvable analytically.

For zero bias, (ε = 0) [20] has used the Van Vleck
perturbation up to the second order g and solved a Born–
Markov master equation in the system’s eigenbasis to get the
dynamics P(t) = ∑

n pnn(t) + ∑
n,m(n>m) pnm(t) with the

phonon number n, m = 0, 1, . . .∞, and proposes selection
rules for zero bias: pnn(t) vanishes for any n, and the non-
zero pnm(t) only exists for three cases: |neven − meven| = 2,
|nodd −modd| = 2, neven −modd = 3 or nodd −meven = 1. When
substituting ε = 0 into (47), the Hamiltonian (47) is exactly
solvable analytically. Following [20], the selection rules can be
deduced similarly. The selection rules show that the transition
between the lowest energy levels | j〉: |0〉 ↔ |1〉 and |0〉 ↔ |2〉
are allowed, whereas |1〉 ↔ |2〉 and |0〉 ↔ |3〉 are forbidden.
This offers a second way to explain why there are only two
dominant frequencies for zero bias.
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4.3. The numerical ab initio technique QUAPI

In order to make comparisons with the results from the
exact numerical method, we have applied the iterative
tensor multiplication scheme derived for the so-called
QUAPI. The numerical method was developed by Makri and
Makarov [32–34]. It can be used both for the zero bias and
non-zero bias open quantum systems. Reference [19] has
already employed the QUAPI method to calculate the spectrum
of the symmetrized correlation function of the qubit–HO–
environment system with memory length �kmax = 1 (checked
at �kmax = 2). The starting Hamiltonian of the QUAPI is (1).
Our environment is the ohmic bath, which is the same as that
in [33], however, our system is the qubit–HO system, which
is rather complicated. Similarly, we map the QUAPI method
for the non-equilibrium dynamics with similar steps, and the
parameters have exactly the same symbols as used in [33].

(i) The first parameter is the dimension Nd of the Hilbert
space of the qubit–HO system. The Hamiltonian of the
qubit–HO system can be numerically diagonalized in the
Nd dimension of the Hilbert space. Meanwhile, we have
employed a second parameter M , which is the lowest
energy sub-space of the dimension Nd of the Hilbert space
of the qubit–HO system. Thus, we can diagonalize the
qubit–HO space in the larger dimension Nd of the Hilbert
space, to get more accurate low energy eigenstates and
calculate the physical quantities in the M dimension sub-
space with less numerical computation. Here we should
choose larger M for stronger qubit–HO coupling g.

(ii) The second parameter is the memory length �kmax in the
influence function. If �kmax � 1, the dynamics in this
approximation are Markovian. If the nonlocality extends
over longer time, terms with �kmax > 1 will have to be
included to obtain accurate results. Comparing to [33] for
the SBM problem with the ohmic bath, only �kmax = 5, 7
reaches stability for zero bias (as shown in figure 2 in [33])
and only �kmax = 7, 9 reaches the long time limit for non-
zero bias (as shown in figure 5 in [33]). Since our system
is complicated, we should use at least �kmax � 7, 9 to
show a stable long time limit for the non-zero bias case.

(iii) The third parameter time-step �t is used to propagate the
propagator tensor A(�kmax), which is a vector of dimension
(M2)(�kmax), and the corresponding tensor propagator
T (2�kmax) is a matrix of dimension (M2)(2�kmax). The
memory time of the non-Markovian steps used by QUAPI
is �kmax�t . The stability of the iterative density matrix
propagation ensures the choices of �t (it should not be
too big nor too small). Therefore, we could choose
appropriate �t to reach larger non-Markovian memory
time under this stability.

In the following numerical calculation by QUAPI, we have
checked for g � 0.5�: Nd = 100 is good enough, and
M � 6 is the minimal requisite to demonstrate the dynamics
qualitatively. For zero bias with weak g � 0.18�, �kmax = 1
could demonstrate the dynamics qualitatively. However, for
non-zero bias, �kmax = 3 is still not stable. The most time-
consuming process is the calculation of the propagator tensor
A(�kmax), requiring (M2)(2�kmax) loops, which is beyond our
computational resources for M � 6 and �kmax � 4.

Figure 3. For zero bias (ε = 0), non-Markovian dynamics P(t) and
its corresponding spectrum S(ω) at zero temperature show good
agreement with results by QUAPI at zero temperature, and by
NIBA [24] and VVBM [20] at low temperature T = 0.1�. Inset (1)
is a magnified part and inset (2) shows S(ω) versus ω. Parameters:
� = �, g = 0.18�,α = 0.004, � = 0.0154. Parameters for
QUAPI, �kmax = 1, �t = 0.4/�, Nd = 100, M = 30.

4.4. Results and discussion

The Markovian approximation of P(t) is equivalent to
approximating the integration in (17) and (18) by the residue
theorem with single pole at −2iγ0 and ω0 − iγ0, respectively.
It leads to

P(t) = η2�2

W 2
cos(ω0t) exp(−γ0t)

+ ε

W

[(
ε

W
+ 1

)
exp(−2γ0t) − 1

]
, (48)

where γ0 = γ (W ) is the Weisskopf–Wigner approximation for
the decay rate and ω0 = W + �(W ) (�(W ) is the level shift).
In the long time limit, the Markovian dynamics are the same as
the non-Markovian ones.

In figure 3, in the case of zero bias (ε = 0) with weak
coupling (� = �, g = 0.18�, α = 0.004, � = 0.0154),
our non-Markovian dynamics P(t) and the corresponding
spectrum S(ω) at zero temperature is compared with the ones
by VVBM [20] (the numerical results) and by NIBA [24] at
low temperature T = 0.1�. We have also checked the results
by QUAPI at zero temperature with �kmax = 1, �t = 0.4/�,
Nd = 100, M = 30. They have shown good agreement
with both P(t) and S(ω). The reasons for comparing to other
results at low temperature are: first, corresponding results
at zero temperature by other methods are not found in the
literature; second, the temperature gives a factor coth( ω

2T )

for each frequency, and in a rough view coth( ω
2T ) ∼ 1 for

typical frequencies (e.g. ω = �) at T = 0.1�; third, the
temperature T = 0.1� is low and the comparisons show that
their properties are similar.

From figures 4 to 6, at finite bias (ε = −0.5�, g = 0.18�,
� = 0.0154), our non-Markovian dynamics P(t) and the
corresponding spectra S(ω) at zero temperature are compared
with the numerical results by VVBM [20] at low temperature
T = 0.1� for three different situations: the qubit being at

7
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Figure 4. For off resonance � = 1.5� with ε = −0.5�,
(a) non-Markovian dynamics P(t) and (b) its corresponding
spectrum S(ω) at zero temperature shows qualitative agreement with
VVBM [20] at low temperature T = 0.1�. In detail, our spectrum
presents one relaxation dip (at ω = 0), one dephasing dip (ω21) and
three dephasing peaks (ω10, ω20, ω30). Moreover, the height of our
peak at ω10 and our dip at ω21 is nearly twice those by VVBM. For
zero bias, there are only two dephasing peaks. Insets: the inset in (a)
and insets (1)–(3) in (b) present magnified views. Inset (4) in (b)
presents the schematic energy levels of the qubit–HO system with
finite bias, where the dashed lines in the left part are for the
uncoupled case (g = 0) and the solid lines in the right part are
numerically exact results for the coupled case. Our dominant
frequencies are related to the energy differences of the coupled
qubit–HO system with numerical calculation. Parameters:
g = 0.18�, � = 0.0154, α = 0.001 77. As additional proof, the
results QUAPI at zero temperature are also provided with parameters
�kmax = 2, �t = 0.3/�, Nd = 100, M = 10; however, these are not
stable results due to the restriction of our computation resources.

positive detunings with the HO (� = 1.5� > W0), on
resonance at (� = W0), and negative detunings with (� =
0.9� < W0). Both the dynamics and the spectra have shown
agreement. Moreover, our spectrum presents five dominant
frequencies: one relaxation dip (at ω = 0), one dephasing
dip (ω21) and three dephasing peaks (ω10, ω20, ω30), where the
four damping oscillation frequencies are related to the energy
differences of the four lowest energy levels of the coupled
qubit–HO system, as shown in the insets, and they have been

verified by the exact numerical diagonalization of Hq−HO (45).
Note that the symbols ωi j denote the dominant frequencies
of S(ω) relating to the energy difference of the energy levels
|i〉 and | j〉 of the coupled qubit–HO system (|i〉 and | j〉 are
eigenstates of the qubit–HO system, as denoted in section 4.2).
Meanwhile, the dominant frequencies can also be interpreted
well with the relaxation dip at ω = 0 ⇔ ωp′1 = 0 in (35),
the dephasing peaks at ω10 ⇔ ωp2 and ω20 ⇔ ωp1 in (33),
ω30 ⇔ ωp3 in (34), and the dephasing dip at ω21 ⇔ ωp′2
in (36). Since in figures 4–6 the qubit–HO coupling is small
(g = 0.18� 
 �,�), the expressions for ωp1, ωp2 and
ωp′2 can be written in simpler approximate forms, as: for on
resonance in figure 5, ω10 ⇔ ωp2 and ω20 ⇔ ωp1 in (40),
ω21 ⇔ ωp′2 in (41); for off resonance in figures 4 and 6.
ω10 ⇔ ωp2 and ω20 ⇔ ωp1 relate to the renormalized energy
difference of the qubit in (42) and to the energy of the HO
in (43), ω21 ⇔ ωp′2 relates to the energy difference of the
qubit and the HO in (44).

In [20] by VVBM, four dominant frequencies are
presented: one relaxation dip (at ω = 0), one dephasing
dip (ω′

21) and two dephasing peaks (ω′
10, ω′

20), and a similar
result is also claimed by QUAPI in [19] (see its figure 7).
In order to distinguish the dominant frequencies by different
methods and/or under different conditions, analogous symbols
ω′

i j denoting the dominant frequencies of numerical results by
VVBM in [20] are employed. As comparison, neither [19]
nor [20] presents the dephasing peak (or dip) at ω30, and to our
knowledge, it has not been shown in the literature. In all the
three figures, the width and height of the dephasing peak at ω20

matches quite well with the one at ω′
20, but our dephasing peak

at ω10 and dephasing dip at ω21 are much higher and sharper,
especially for the on resonance case in figure 5. Meanwhile,
the dominant frequencies ω′

i j are nearly equal to the dominant
frequencies ωi j , but in detail ω′

i j are a bit larger than ωi j . For
the on resonance case in figure 5, our dephasing dip at ω21

has comparable weight with our dephasing peaks at ω10 and
ω20, which is qualitatively different from the ones by VVBM.
As a brief summary, our dynamics and spectra have shown
agreement with [20].

As an additional proof, from figures 4 to 6, we have
calculated the dynamics P(t) by QUAPI at zero temperature
and the corresponding spectra S(ω) with numerical Fourier
transformation to the dynamics P(t). The spectra have shown
agreement qualitatively. As shown in [33] for the biased SBM
problem, the long time limit will be true only with large �kmax

(e.g. �kmax = 7, 9). Due to the restriction of our computation
resources, we could not provide stable results by QUAPI,
which requires a large memory length �kmax and M � 6
(our quantum system is a rather complicated qubit–HO system,
not just a TLS in the SBM as shown in [33]). However, the
presented dynamics by QUAPI have shown that the tendencies
of the long time limit, from Markovian (�kmax = 1) cases to
the larger memory time (�kmax = 2, 3) cases, go closer to the
ones of our non-Markovian analytical dynamics.

In order to compare our approach with VVBM in [20], g
is kept rather small in figures 4–6, as are the corresponding
α (all α < 0.005). Nevertheless, our approach has no direct
restriction in g and it can work with stronger α. Therefore, in
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Figure 5. For on resonance � = W0 = √
�2 + ε2 with ε = −0.5�,

(a) non-Markovian dynamics P(t) and (b) its corresponding
spectrum S(ω) at zero temperature shows qualitative agreement with
VVBM [20] at low temperature T = 0.1�,. Similarly to figure 4, our
spectrum presents five dominant frequencies (ω = 0, ω10, ω20, ω21,
ω30). Our dephasing dip at ω21 is much deeper and sharper than the
ones by VVBM. Our dip at ω21 has a comparable weight to our
dephasing peaks at ω10 and ω20, which is qualitatively different from
the ones by VVBM. For zero bias, there are only two dephasing
peaks. Insets: the inset in (a) and inset (1) in (b) present magnified
views. Inset (2) in (b) presents the schematic energy levels of the
qubit–HO system with finite bias, where the left dashed lines are for
the uncoupled case and the right solid lines are for the coupled case.
Our dominant frequencies are related to the energy differences of the
coupled qubit–HO system with numerical calculation. Parameters:
g = 0.18�, � = 0.0154, α = 0.003 19. As an additional proof, the
results by QUAPI at zero temperature are also provided with
parameters for QUAPI (I), �kmax = 1, �t = 0.4/�, Nd = 100,
M = 30 and for QUAPI (II), �kmax = 3, �t = 0.4/�, Nd = 100,
M = 6. However, they are not stable results due to the restriction of
our computation resources. With a larger memory length �kmax and
a larger sub-space dimension of the qubit–HO system M , QUAPI
will provide more stable results.

figures 7 and 8, it presents a larger qubit–HO coupling (g =
0.7906�) and larger spin–bath coupling (α = 0.01, 0.05, 0.1)
for positive detunings (� = 2� > W0) and near resonance
(� = � ∼ W0). The results for negative detunings are similar
to the positive ones and the figure for negative detunings is
not repeated. Likewise, the biased spectrum presents one

Figure 6. For off resonance � = 0.9� with ε = −0.5�,
(a) non-Markovian dynamics P(t) and (b) its corresponding
spectrum S(ω) at zero temperature shows qualitative agreement with
VVBM [20] at low temperature T = 0.1�. Similarly to figure 4, our
spectrum presents five dominant frequencies (ω = 0, ω10, ω20, ω21,
ω30). Moreover, our peaks (or dips) are a bit sharper and higher than
the ones by VVBM. For zero bias, there are only two dephasing
peaks. Insets: the inset in (a) and inset (1) in (b) presents magnified
views. Inset (2) in (b) presents the schematic energy levels of the
qubit–HO system with finite bias, where the left dashed lines are for
the uncoupled case and the right solid lines are for the coupled case.
Our dominant frequencies are related to the energy differences of the
coupled qubit–HO system with numerical calculation. Parameters:
g = 0.18�, � = 0.0154, α = 0.004 93. As an additional proof, the
results by QUAPI at zero temperature are also provided with
parameters for QUAPI (I), �kmax = 1, �t = 0.4/�, Nd = 100,
M = 30; for QUAPI (II), �kmax = 2, �t = 0.4/�, Nd = 100,
M = 8.

relaxation peak (at ω = 0) and four dephasing peaks (ω10,
ω20, ω21, ω30). The dominant frequencies can be interpreted
well with the energy differences of the four lowest energy
levels of the coupled qubit–HO system as above. Similarly,
they can also be interpreted well with the relaxation peak at
ω = 0 ⇔ ωp′1 = 0 in (35), the dephasing peaks at ω10 ⇔ ωp2

and ω20 ⇔ ωp1 in (33), ω30 ⇔ ωp3 in (34), and the dephasing
dip at ω21 ⇔ ωp′2 in (36). In contrast to the small qubit–HO
coupling, the weights of the dephasing peaks at ω30 shown in
figures 7 and 8 grow larger. For near resonance in figure 8, our
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Figure 7. For off resonance � = 0.5� with larger qubit–HO
coupling g = 0.7906�, (a) non-Markovian dynamics P(t) and
(b) its corresponding spectrum S(ω) at zero temperature are shown
with bias ε = 0.1� and with zero bias, while the Markovian one in
(a) has shown the long time limit. Similarly, the biased spectrum
presents four dephasing peaks (ω10, ω20, ω21, ω30) and one relaxation
peak (ω = 0), while the unbiased one only presents two dephasing
peaks. Insets: inset (1) in (b) presents a magnified view. Inset (2) in
(b) presents the schematic energy levels of the qubit–HO system with
finite bias, where the left dashed lines are for the uncoupled case and
the right solid lines are for the coupled case. Our dominant
frequencies are related to the energy differences of the coupled
qubit–HO system with numerical calculation. Parameters: α = 0.01,
� = 0.002.

dephasing peak at ω21 has comparable weight to our dephasing
peaks at ω10 and ω20 and the weight of the dephasing peak at
ω30 grows much larger than that for off resonance in figure 7.

Meanwhile, the corresponding Markovian dynamics given
by (48) have been presented in figure 7 to show the long time
limit. Moreover, in figure 8 with the same � = �, g =
0.7906� and ε = 0.1�, the effect with different � (=0.002,
0.01, 0.02) is shown, as well as different corresponding α

(=0.01, 0.05, 0.1). The results show that the distributions
of the dominant frequencies vary little, but with smaller �

or α, the dephasing peaks will be higher and sharper and the
dephasing will be smaller, which is physically reasonable.

The non-Markovian dynamics and the spectra for zero
bias (ε = 0) in figures 3–8 have shown that the spectra have
only presented two dephasing peaks (ω′′

10, ω′′
20) for zero bias,

Figure 8. For near resonance � = � with larger qubit–HO coupling
g = 0.7906�, (a) non-Markovian dynamics P(t) and (b) its
corresponding spectrum S(ω) at zero temperature are compared
between the biased case ε = 0.1� and the unbiased case at
α = 0.05, � = 0.01. Similarly, the biased spectrum presents four
dephasing peaks (ω10, ω20, ω21, ω30) and one relaxation peak
(ω = 0), while the unbiased one only presents two dephasing peaks.
In addition, with the same � = �, g = 0.7906� and ε = 0.1�, the
effect with different � or α (red dot line: α = 0.01, � = 0.002 and
violet dash line: α = 0.1, � = 0.02) is shown: the distributions of
the dominant frequencies vary little, but with smaller � or α, the
dephasing peaks will be higher and sharper and the dephasing will be
smaller. Insets: inset in (b) presents the schematic energy levels of
the qubit–HO system with finite bias where the left dashed lines are
for the uncoupled case and the right solid lines are for the coupled
case. Our dominant frequencies are related to the energy differences
of the coupled qubit–HO system with numerical calculation.

which are consistent with the literature results and have been
interpreted in two ways, as shown above (with (38) or the
selection rules). Similarly, ω′′

i j has been employed to denote
the dominant frequencies for zero bias and they are related to
the energy levels of the unbiased coupled qubit–HO system.
Compared to zero bias, the effect of non-zero bias is shown in
figures 4–8, i.e., three additional resonant peaks appear in the
spectrum: the relaxation peak at ω = 0, a third dephasing peak
(dip) at ω21 and a fourth dephasing peak at ω30. Note that the
frequency ω′′

10 for zero bias is usually smaller than the biased
one ω10.
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Figure 9. As a proof, a comparison between our non-Markovian
dynamics P(t) and the numerical results by QUAPI at zero
temperature with moderately strong qubit–HO coupling g = 0.5�,
for the near resonance case � = � with ε = 0. Both the dynamics
and the spectra show rough qualitative agreement, where the results
by QUAPI are restricted by our computation resources from reaching
stable results. Parameters for QUAPI (I), �kmax = 1, �t = 0.5/�,
Nd = 100, M = 30; for QUAPI (II), �kmax = 2, �t = 0.5/�,
Nd = 100, M = 10. Parameters: g = 0.5�, � = 0.005, α = 0.01.

For non-zero bias, at ω = 0 and ω21, two dips are clearly
shown for negative bias and two peaks instead for positive bias
in figures 4–8. It can be interpreted as follows: ω = 0 is
mapped to ωp′1 = 0 and ω21 is mapped to ωp′2; ωp′1 and ωp′2
are the solutions ωp′ of equation (31); equation (31) is from
the first term of S(ω) in (29); the sign of the first term of S(ω)

in (29) is the same as the bias ε. Similar analysis can be done
for the remaining three dominant frequencies. Therefore, there
are always peaks at ω10, ω20 and ω30; while at ω = 0 and ω21,
there are peaks for positive bias (ε > 0) and dips for negative
bias (ε < 0).

In figure 9, as an additional proof for our result for
the larger qubit–HO coupling, we have made comparisons
between our non-Markovian dynamics P(t) and the numerical
results by QUAPI (�kmax = 1, 2) at zero temperature, as
well as the spectra. Similarly, due to the restriction of our
computation resources, we have only presented parameters as
shown in figure 9 and we could not provide stable results
by QUAPI, which requires a large memory length �kmax (as
shown in figure 2 for SBM in [33], �kmax = 5, 7) and M �
6. However, the comparison shows qualitative agreement in
figure 9: the dominant frequencies are close; the dynamics
have similar patterns.

As a brief summary to the biased spectrum S(ω) of the
non-Markovian dynamics P(t): there are five resonances, i.e.,
the relaxation peak (dip) at ω = 0, one dephasing peak (dip) at
ω = ω21, three dephasing peaks at ω = ω10, ω20, ω30, which
are related to the energy differences of the four lowest energy
levels of the coupled qubit–HO system. For the qubit having
the HO at positive detunings (� > W0), the dephasing peak at
ω = ω10 and the relaxation peak (dip) at ω = 0 are generally
dominant; for on/near resonance (� ∼= W0), the dephasing
peaks (dip) at ω = ω10, ω20, ω21 are generally dominant; for

Figure 10. Non-Markovian dynamics P(t) for the near resonance
case � = � with ε = 0.1� and � = 0.01 for different spin–bath
coupling α = 0.005, 0.05, 0.1, 0.2168 (corresponding qubit–HO
coupling g/� = 0.25, 0.7906, 1.1180, 1.6462) all with
α < αc = 0.216 832 29. It shows that when increasing α from weak
to strong, the dynamics go from abundant oscillation to nearly pure
damping. Insets: the inset is the susceptibility χ ′′(ω) versus ω and it
shows that when increasing α close to αc the highest peak goes close
to infinity near ω = 0.

negative detunings (� < W0), if g is small, the dephasing
peak at ω = ω20 is generally dominant, otherwise, the peak
at ω = ω10 is dominant. A rough idea is that: the dominant
frequency(ies) closer to the renormalized energy difference of
the qubit (W0) usually contribute(s) more weight.

Figure 10 shows the dynamics with different α for non-
zero bias. As usual, larger decay accompanies larger α.
Our method also works well for sufficiently strong spin–bath
coupling as long as α < αc (see section 5) beyond weak
coupling regime.

The sum rule of the non-Markovian dynamics is checked,
as shown in table 1, and it is exactly satisfied with
representative parameters for α < αc.

5. Susceptibility and coherent–incoherent transition

The susceptibility χ(ω) = −G(ω), where G(ω) (obtained
in the appendix in detail) is the Fourier transformation of the
retarded Green function G(t) = −iθ(t)Z−1Tr{exp(−β H )

[σz(t), σz ]}, in which θ(t) is the unit step function. The
imaginary part of χ(ω) is χ ′′(ω),

χ ′′(ω) = η2�2

W 2

{
�(ω)θ(ω)

[ω − W − �(ω)]2 + �2(ω)

− �(−ω)θ(−ω)

[ω + W + �(−ω)]2 + �2(−ω)

}
, (49)

and its real part χ ′(ω = 0) can be obtained by the Kramers–
Kronig relation as

χ ′(ω = 0) = 2

π

∫ ∞

0

χ ′′(ω)

ω
dω. (50)

11



J. Phys.: Condens. Matter 22 (2010) 115301 C Gan et al

Table 1. The sum rule and the Shiba relation are checked with representative parameters. Here R ≡ limω→0 F(ω)/ π

4 [χ ′(0)]2, where
F(ω) = χ ′′(ω)/J (ω).

α �/� � ε/� χ ′(0) limω→0 F(ω) R P(t = 0)

0.1 0.1 0.05 0.1 5.897 376 962 27.315 405 94 1 1
0.1 0.2 0.05 0.1 10.161 505 27 81.097 221 54 1 1
0.1 0.5 0.01 0 77.385 195 88 4703.332 194 1 1
0.3 0.5 0.01 0.01 0.058 457 193 99 0.002 683 896 792 1 1
0.1 0.5 0.1 0.5 1.558 179 498 1.906 886 539 1 1
0.2 0.5 0.2 0.1 5.784 656 542 26.281 190 72 1 1
0.1 1 0.01 0 49.762 408 45 1944.879 348 1 1
0.3 1 0.01 0.01 0.233 784 401 0.042 926 051 41 1 1
0.1 1 0.01 0.1 36.237 221 91 1031.3348 1 1
0.21 1 0.01 0.1 7.819 123 532 48.018 217 04 0.999 999 9999 1
0.216 1 0.01 0.1 49.367 629 68 1914.143 282 1.000 000 025 1
0.2168 1 0.01 0.1 1228.943 521 1186 131.33 0.999 951 7554 0.999 999 9947
0.2 1 0.05 0.01 7.857 533 292 48.491 134 04 1 1
0.5 1 0.2 0.1 5.312 073 901 22.162 4668 1 1
0.1 1.1 0.05 0.1 2.920 164 619 6.697 373 981 1 1
0.2 1.2 0.01 0.1 7.494 084 145 44.108 979 66 1 1
0.1 1.5 0.05 0.1 2.003 650 314 3.153 070 92 1 1

Our approach can be checked by the Shiba rela-
tion [35–38]

lim
ω→0

χ ′′(ω)

J (ω)
= π

4
[χ ′(ω = 0)]2. (51)

As long as α < αc, the Shiba relation is exactly satisfied, as
shown in table 1 with representative parameters.

The susceptibility χ ′′(ω) is the same as the second term of
S(ω) in (29) for ω � 0 and it is an odd function of ω. Usually
χ ′′(ω = 0) = 0. On increasing α to a particular value αc,
a critical phase occurs and χ ′′(ω = 0) = ∞. Meanwhile,
�(ω) ∝ ω and we have checked that [ω − W − �(ω)] ∝
ω when ω → 0. Thus, the coherent–incoherent transition
point [1, 2] αc is defined as the solution of

− W − �(0) = 0. (52)

In figure 10, non-Markovian dynamics P(t) and the
susceptibilities χ ′′(ω) have been shown with different α

(=0.005, 0.05, 0.1, 0.2168). In addition, the coherent–
incoherent transition point αc (=0.216 832 29) is calculated
by (52). P(t) exhibits considerable oscillation for weak α

(=0.005), beating oscillation for moderate α (=0.05), badly
damped oscillation for moderately strong α (=0.1), and nearly
pure damping for sufficiently strong α (=0.2168) (nearly
equals to αc). In the inset of figure 10, χ ′′(ω) is plotted against
ω, and the curve shows three non-zero frequency peaks for all
α < αc. Increasing α from weak (0.005) to strong (0.2168), the
peak at the smallest frequency rapidly moves close to ω = 0
and the corresponding peak grows to a large value, while the
other peaks approach zero. When α < αc, χ ′′(ω = 0) = 0. At
α = αc, χ ′′(ω = 0) = ∞. Therefore, the particular value αc is
the coherent–incoherent transition point.

In figure 11, phase diagrams of the coherent–incoherent
transition point αc versus bias ε with different � are shown.
The area for α < αc is called the ‘coherent phase’, and for
α > αc the ‘incoherent phase’. As shown in figure 11(a)
for near resonance � = �, the changing curve of αc versus

ε is an ohmic-like. αc gradually increases with increasing
bias, and it increases rapidly with increasing �. As shown in
figure 11(b) for off resonance � = 0.5�, the changing curve is
nontrivial for small � = 0.075: one sharp peak exists around
ε = 0.0655� and the curve at the ends behaves ohmic-like.
The sharp peak is substituted by a smooth kink for � = 0.0762.
While for � = 0.08, 0.1, the kink disappears and the whole
curve behaves ohmic-like. Further results show that when
decreasing � (e.g. � < 0.075) the sharp peak grows much
sharper and higher, and the corresponding bias of the peak
becomes smaller. Under smaller �, a significant difference of
αc between the steep area at finite bias and the platform area
with zero bias might be utilized, e.g. for reading out the qubit
state.

6. Conclusions

We have investigated the biased SBM with a Lorentzian
spectral density by a new analytical approach at zero
temperature. An equivalent description of the system is
provided by a biased qubit coupled through a HO to an
ohmic environment. The starting point is the general SBM
Hamiltonian (2) without RWA. We have applied two unitary
transformations to the Hamiltonian and the non-Markovian
master equation within the nontrivial Born approximation to
get an expression for the density operator. With the density
operator, we have provided analytical expressions for the non-
Markovian dynamics P(t) and the corresponding spectrum
S(ω). Meanwhile, the localized–delocalized transition point
αL and the coherent–incoherent transition point αc are
determined, which have not been provided so far (except αc

with zero bias by [26]), as well as the analytical ground energy,
the renormalized tunneling factor η and the susceptibility
χ ′′(ω). The sum rule and the Shiba relation are carefully
checked, and they are exactly satisfied as long as α < αc.

The biased dynamics and the corresponding spectrum are
key topics in this paper. Both for biased and unbiased cases,
they have been compared with the results of other groups and

12
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Figure 11. Phase diagram of the coherent–incoherent transition point
αc versus bias ε, for (a) near resonance � = � with different
� = 0.05, 0.08, 0.1; (b) off resonance � = 0.5� with different
� = 0.075, 0.0762, 0.08, 0.1. A kink appears when � is small for off
resonance, otherwise αc gradually increases with ε.

have shown good agreement. For non-zero bias, our spectrum
presents five dominant frequencies: the relaxation peak (dip)
at ω = 0, one dephasing peak (dip) at ω = ω21 and three
dephasing peaks at ω = ω10, ω20, ω30. Our approach has no
direct restriction on the qubit–HO coupling g. Therefore, it
is a good way to investigate the dynamics in the little-studied
strong qubit–HO coupling regime, especially in the static
biased case, which has not been studied yet to our knowledge,
as shown in figures 7, 8 and 10. As an additional proof, but
restricted by our computational resources (�kmax = 3 and
M � 6), we have obtained results by QUAPI with zero bias
for weak or sufficient strong qubit–HO coupling (g = 0.18�

in figure 3 and g = 0.5� in figure 9) and non-zero bias (from
figures 4 to 6), and the dynamics and the spectra have shown
agreement qualitatively, but the stable dynamics for non-zero
bias are still beyond our computational resources. Moreover,
the origin and the meanings of the dominant frequencies have
been studied in two ways: providing analytical expressions
for each dominant frequency with small HO–environment
coupling � and comparing them with the spectra of the qubit–
HO systems. We have also discussed why there are sometimes
peaks and sometimes dips, as well as the weight distribution
of the peaks (dips) and why there are only two dominant
frequencies for the unbiased case. Meanwhile, fixing other

parameters, the effects with different α and corresponding �

are also shown. The dynamics at the long time limit are given
analytically as −ε/W , which are consistent with Markovian
dynamics.

In summary, we have provided analytical results
for interesting physical quantities without the Markovian
approximation and our approach works well at arbitrary
detunings: on/off resonance, with/without bias and from weak
to sufficiently strong spin–bath coupling as long as α < αc.
Admittedly, this approach is not suitable for very strong spin–
bath coupling, e.g. α > αc. Nevertheless, the coherent regime
is the most interesting one in the field of quantum computation
and quantum information.
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Appendix

Following the transformation made to H to reach H̃ , the
retarded Green function is

G(t) = −iθ(t)Z−1Tr{exp(−β H )

× [exp(iH t)σz exp(−iH t), σz]}
= −iθ(t)Z−1Tr

{
exp(−β H̃)

×
(

ε2

W 2
[σ̃z(t), σ̃z ] + η2�2

W 2
[σ̃x(t), σ̃x ]

− η�ε

W 2
[σ̃z(t), σ̃x ] − η�ε

W 2
[σ̃x(t), σ̃z ]

)}
. (A.1)

The Fourier transformation of G(t) is denoted as

G(ω) = ε2

W 2
〈〈σ̃z; σ̃z〉〉 + η2�2

W 2
〈〈σ̃x ; σ̃x〉〉

− η�ε

W 2
〈〈σ̃z; σ̃x〉〉 − η�ε

W 2
〈〈σ̃x ; σ̃z〉〉, (A.2)

where

〈〈A; B〉〉 = −iθ(t)Z−1

× Tr{exp(−β H̃)[exp(iH̃ t)A exp(−iH̃ t), B]}
denotes the retarded Green function which satisfies the
following equation of motion,

ω〈〈A; B〉〉 = 〈[A, B]〉 + 〈〈[A, H̃ ]; B〉〉,

〈[A, B]〉 = Z−1Tr{exp(−β H̃)[A, B]}.

Thus, we can get the following equation chain:

ω〈〈σ̃x ; σ̃x〉〉 = W 〈〈iσ̃y ; σ̃x〉〉
+

∑

k

Qk〈〈iσ̃y(b
†
k + bk); σ̃x〉〉

−
∑

k

Vk〈〈σ̃z(b
†
k − bk); σ̃x 〉〉, (A.3)
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ω〈〈iσ̃y; σ̃x 〉〉 = 2〈σ̃z〉H̃0
+ W 〈〈σ̃x ; σ̃x〉〉

+
∑

k

Qk〈〈σ̃x (b
†
k + bk); σ̃x 〉〉

+
∑

k

Vk〈〈σ̃z(b
†
k + bk); σ̃x〉〉, (A.4)

ω〈〈σ̃x (b
†
k + bk); σ̃x〉〉 = −ωk〈〈σ̃x (b

†
k − bk); σ̃x 〉〉

+ W 〈〈iσ̃y(b
†
k + bk); σ̃x〉〉 + Qk〈〈iσ̃y; σ̃x〉〉, (A.5)

ω〈〈σ̃x (b
†
k − bk); σ̃x〉〉 = −ωk〈〈σ̃x (b

†
k + bk); σ̃x 〉〉

+ W 〈〈iσ̃y(b
†
k − bk); σ̃x〉〉 − Qk〈〈σ̃x ; σ̃x〉〉, (A.6)

ω〈〈iσ̃y(b
†
k + bk); σ̃x 〉〉 = −ωk〈〈iσ̃y(b

†
k − bk); σ̃x〉〉

+ W 〈〈σ̃x (b
†
k + bk); σ̃x 〉〉 + Qk〈〈σ̃x ; σ̃x 〉〉, (A.7)

ω〈〈iσ̃y(b
†
k − bk); σ̃x 〉〉 = −ωk〈〈iσ̃y(b

†
k + bk); σ̃x〉〉

+ W 〈〈σ̃x (b
†
k − bk); σ̃x 〉〉 − Qk〈〈iσ̃y; σ̃x〉〉, (A.8)

where 〈σ̃z〉H̃0
= 〈g0|σ̃z|g0〉 = 1. We have already made

the cutoff approximation for the equation chains at the second
order of λk . In addition, 〈〈σ̃z; σ̃x〉〉 = 0, 〈〈σ̃z; σ̃z〉〉 = 0, and
〈〈σ̃x ; σ̃z〉〉 = 0, so the solution for G(ω) is

G(ω) = η2�2

W 2

×
(

1

ω−W− ∑
k V 2

k /(ω−ωk)− ∑
k Q2

k/(ω−W−ωk)

− 1

ω+W− ∑
k V 2

k /(ω+ωk)−∑
k Q2

k/(ω+W+ωk)

)
.

(A.9)

References

[1] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A,
Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1

[2] Weiss U 1999 Quantum Dissipative Systems (Singapore: World
Scientific)
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